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Abstract. A formal solution of the Ornstein–Zernike equation for a multicomponent fluid
consisting of hard-spherical molecules is studied with the closure of the usual hard-sphere condition
and the following:

cij (r) =
∑
n=1

(
K

(n)
ij

r
+ L

(n)
ij zn

)
e−znr σij < r

where cij (r) is the direct correlation function and σij is the closest distance between i and j species
of molecules. The solution is expressed in terms of the physical solutions of a system of nonlinear
algebraic equations. The result is a generalization of that of Blum (1980 J. Stat. Phys. 22 661).

The thermodynamical and structural properties of a fluid are described by correlation functions
between molecules in the fluid. One of the most useful schemes for calculations of correlation
functions is based on the Ornstein–Zernike (OZ) equation. The OZ equation is in principle
solved when it is closed by a closure relation. Many workers have studied the analytical
solutions of the OZ equation with the closures in the mean spherical approximation (MSA)
or the generalized mean spherical approximation (GMSA). As far as the present authors are
aware, the case of the most general MSA closure is solved by Blum and Høye (1978) and Blum
(1980), where the closure is defined as follows:

gij (r) ≡ hij (r) + 1 = 0 r < σij = (σi + σj )/2 (1)

and

cij (r) =
∑
n=1

K
(n)
ij

r
e−znr σij < r (2)

where hij (r) and cij (r) are the total and the direct correlation functions for two spherical
molecules of i and j species, σi is the diameter of i species of molecule and K

(n)
ij and zn are

parameters characterizing the interaction between molecules. The work is based on the Baxter
formalism of the OZ equation (Baxter 1970).

For the formal solution by Blum and Høye, one of the present authors (Ginoza
1986a, b) considered the factorizable case: K

(n)
ij = K(n)d

(n)
i d

(n)
j . This case actually

gives considerable simplification for the formal solution and has been useful: the tractable
expressions have been obtained for thermodynamic (Ginoza 1990, Yurdabak et al 1994,
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Herrera et al 1996) and structural (Ginoza and Yasutomi 1998a) quantities of a fluid
with size and interaction polydispersities as well as a fluid with an arbitrary number of
components. Such investigations are still progressing (Blum et al 1992, Ginoza and Yasutomi
1998b).

In the present Letter, a new case of the following closure relation will be considered:

cij (r) =
∑
n=1

(
K

(n)
ij

r
+ L

(n)
ij zn

)
e−znr σij < r. (3)

This is a generalization of the closure of equation (2). As far as the present authors are
aware, no analytical solution of the OZ equation with the closure of equations (1) and
(3) has been given yet. The aim of the present Letter is to present the formal solution
for the new case. The work would be statistical-mechanically interesting and useful for
understanding colloidal fluids as well (Sood 1991). In particular, the single term case of
equation (3) corresponds to the Sogami–Ise potential (Sogami and Ise 1984); the present
result prompts us to investigate the thermodynamic and structural properties of the colliodal
fluids.

We consider the multicomponent fluid. In the Baxter formalism of the OZ equation,
the Baxter function Qij (r) plays a essential role and the OZ equation is given as
follows:

2πrcij (r) = − d

dr
Qij (r) +

∑
l

ρl

∫ ∞

λlj

dt Qjl(t)
d

dr
Qil(r + t) (4a)

2πrhij (r) = − d

dr
Qij (r) + 2π

∑
l

ρl

∫ ∞

λjl

dt Qlj (t)(r − t)hil(|r − t |) (4b)

where ρl stands for the number density of molecules of l species and λlj = (σl − σj )/2.
We shall obtain Qij (r) by solving these equations with the closure of equations (1) and
(3).

As usual (Blum and Høye 1978, Blum 1980), we write the function Qij (r) as

Qij (r) = Q0
ij (r) + Q1

ij (r) (5a)

where

Q0
ij (r) = 0 r > σij or r < λji . (5b)

Substitution of equation (5a) into equation (4a) and the use of equations (3) and (5b) yields

2π
∑
n=1

(
K

(n)
ij + L

(n)
ij znr

)
e−znr = − d

dr
Q1

ij (r) +
∑
l

ρl

∫ ∞

λlj

dt Qjl(t)
d

dr
Q1

il(r + t)

r > σij . (6a)

Substitution of equation (5a) into (4b) and the use of equations (1) and (5b) yields

d

dr
Q0

ij (r) = Aj r +

(
βj − 1/2σjAj

)
− d

dr
Q1

ij (r) − 2π
∑
l

ρl

∫ ∞

σil

dt gil(t) t Q
1
lj (t + r)

λji < r < σij (6b)

where

Aj = 2π

(
1 −

∑
l

ρlT
(0)
lj

)
(7a)

βj = 1

2
σjAj + 2π

∑
l

ρlT
(1)
lj (7b)
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with

T
(n)
lj =

∫ ∞

λjl

dr rnQlj (r). (7c)

Now, equations (6a) and (6b) suggest the following functional form for Q1
ij (r):

Q1
ij (r) =

∑
n=1

(
D

(n)
ij + E

(n)
ij znr

)
e−znr . (8)

In fact, the direct substitution shows that equation (8) is the solution of equation (6a) if the
following equations are satisfied:

2πK
(n)
ij = zn

∑
l

{
(D

(n)
il − E

(n)
il )[δlj − ρlQ̃jl(izn)] − E

(n)
il znρlQ̃

(1)
j l (izn)

}
(9a)

2πL
(n)
ij = zn

∑
l

E
(n)
il

[
δlj − ρlQ̃jl(izn)

]
(9b)

where

Q̃jl(s) =
∫ ∞

λlj

dr Qjl(r)e
isr (10a)

Q̃
(1)
j l (s) =

∫ ∞

λlj

dr Qjl(r)reisr . (10b)

On the other hand, substituting equation (8) into equation (6b) and solving the resulting
differential equation with the use of the boundary condition Q0

ij (σij ) = 0, we
obtain

Q0
ij (r) = 1

2
(r − σij )(r − λji)Aj + (r − σij )βj +

∑
n

(
C

(n)
ij + F

(n)
ij

) (
e−znr − e−znσij

)
+
∑
n

znF
(n)
ij

(
re−znr − σije−znσij

)
λji � r � σij (11)

where

C
(n)
ij = −D

(n)
ij + E

(n)
ij +

∑
l

(
D

(n)
lj γil(zn) + E

(n)
lj γ

(1)
il (zn)

)
(12a)

F
(n)
ij = −E

(n)
ij +

∑
l

E
(n)
lj γil(zn) (12b)

with

znγil(zn) = 2πρlg̃il(zn) (13a)

γ
(1)
il (zn) = 2πρlg̃

(1)
il (zn) (13b)

g̃il(zn) =
∫ ∞

σil

dr e−znr rgil(r) (14a)

g̃
(1)
il (zn) =

∫ ∞

σil

dr e−znr r2gil(r). (14b)

Now, we have obtained the functional form of Qij (r), which is equation (5a) with equations
(5b), (8) and (11). As is seen from equations (12a) and (12b), Qij (r) is given apparently
by Aj , βj and the set {D(n)

ij , E
(n)
ij , γij (zn), γ

(1)
ij (zn)}. Below, however, we will show that

Aj and βj are given explicit expressions in terms of the set. Thus, we see that Qij (r) is
expressed in terms of the set. The set is determined by equations (9a) and (9b) and the
additional conditions obtained from equation (4b) for r > σij which Qij (r) has to satisfy. The
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additional equations are obtained by calculating equations (14a) and (14b) from the equation
(4b) as follows:

2π
∑
l

g̃il(zn)
[
δlj − ρlQ̃lj (izn)

]

=
[(

1 +
znσi

2

)
Aj + znβj

] e−znσij

z2
n

−
∑
m=1

zme−(zn+zm)σij

zn + zm

{
C

(m)
ij + F

(m)
ij

zm

zn + zm

[
1 + (zn + zm)σij

]}
(15a)

2π
∑
l

g̃
(1)
il (zn)

[
δlj − ρlQ̃lj (izn)

]

=
∑
m=1

zme−(zn+zm)σij

(zn + zm)2

[
1 + (zn + zm)σij

]

×
∑
l

D
(m)
lj

[
δli − γil(zm)

]−
∑
m=1

zme−(zn+zm)σij

(zn + zm)3

∑
l

E
(m)
lj

×
{
(zn + zm)

[
1 + (zn + zm)σij

] [
δli + γ

(1)
il (zm)

]

−zm
[
1 + [1 + (zn + zm)σij ]2

] [
δli − γil(zm)

] }

+zn
∑
l

γil(zn)Q̃
(1)
lj (izn) +

e−znσij

z3
n

×
{[

1 + (1 + znσij )
(

1 +
znσi

2

)]
Aj + zn(1 + znσij )βj

}
. (15b)

The Laplace transforms Q̃lj (is) and Q̃
(1)
lj (is) are obtained by integrating equations (10a) and

(10b) with the use of the solution Qlj (r) (equation (5a)):

e−sλlj Q̃lj (is)

= 1

2
Aj&

(2,0)
lj (s, 0) + Bj&

(1,0)
lj (s, 0)

+
∑
n=1

[
(C

(n)
lj + F

(n)
lj )&

(0,0)
lj (s, zn) + F

(n)
lj zn&

(1,0)
lj (s, zn)

]

+
∑
n=1

D
(n)
lj

e−znλjl

s + zn
+
∑
n=1

E
(n)
lj

zne−znλjl

(s + zn)2
[1 + (s + zn)λjl] (16a)

e−sλlj Q̃
(1)
lj (is)

= 1

2
Aj&

(3,1)
lj (s, 0) + Bj&

(2,1)
lj (s, 0)

+
∑
n=1

[
(C

(n)
lj + F

(n)
lj )&

(1,1)
lj (s, zn) + F

(n)
lj zn&

(2,1)
lj (s, zn)

]

+
∑
n=1

D
(n)
lj

e−znλjl

(s + zn)2
[1 + (s + zn)λjl]

+
∑
n=1

E
(n)
lj

zne−znλjl

(s + zn)3

{
1 +

[
1 + (s + zn)λjl

]2
}

(16b)
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where Bj = βj − 1
2σjAj ,

&
(n,m)
lj (s, z) = σle

−zλjl

∫ 1

0
dt
[
(λjl + σlt)

ne−(s+z)σl t − σn−m
lj (λjl + σlt)

me−zσl−sσl t
]
. (17)

Equation (17) is a linear combination of integrals as

φ(m)(x) =
∫ 1

0
dt tme−xt m = 0, 1, 2, · · · , n. (18)

In particular,

&
(1,0)
lj (s, 0) = σ 2

l ϕ1(sσl)

&
(2,0)
lj (s, 0) = σjσ

2
l ϕ1(sσl) + 2σ 3

l ψ1(sσl)

&
(2,1)
lj (s, 0) = 1

2
σjσ

2
l ϕ1(sσl) + σ 3

l ϕ2(sσl)

&
(3,1)
lj (s, 0) = σjσ

3
l ψ1(sσl) + σ 4

l ψ2(sσl) +
1

2
σ 2
j σ

2
l ϕ1(sσl) + σjσ

3
l ϕ2(sσl)

where

ϕ1(x) = (1 − x − e−x)/x2

ϕ2(x) = [
2 − 3x/2 + x2/2 − (2 + x/2)e−x

]
/x3

ψ1(x) = [1 − x/2 − (1 + x/2)e−x]/x3

ψ2(x) = [
6 − 3x + x2/2 − (

6 + 3x + x2/2
)

e−x
]
/x4.

These functions are used below.
By solving equations (7a) and (7b), let us give Aj and βj explicit expressions in terms of

the set {D(n)
ij , E(n)

ij , γij (zn), γ
(1)
ij (zn)}.

Equations (7c) for n = 0 and 1 are obtained from equations (16a) and (16b), respectively.
Thus, from equations (7a), (16a), (12a) and (12b) we have

Aj = 2π

-

[
1 +

1

2
ζ2βj +

∑
n=1

(
M

(n)
j + N

(n)
j

)]
(19)

where

M
(n)
j =

∑
k

ρkC
M
k (zn)D

(n)
kj e−znσkj (20a)

N
(n)
j =

∑
k

ρkE
(n)
kj e−znσkj

[znσj

2
CM

k (zn) − CN
k (zn)

]
(20b)

with

CM
k (zn) =

∑
l

eznλkl γkl(zn)znσ
2
l ϕ1(−znσl) − 1 + znσk

zn
(21a)

CN
k (zn) =

∑
l

eznλkl

[
γkl(zn)z

2
nσ

3
l ϕ2(−znσl) − γ

(1)
kl (zn)znσ

2
l ϕ1(−znσl)

]

+
2 + znσk + z2

nσ
2
k

2zn
. (21b)

Similarly, from equations (7b), (16b), (12a), (12b) and (19) we have

βj = π

-
σj +

2π

-

∑
n=1

[
µ

(n)
j + ν

(n)
j

]
(22)
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where - = 1 − πζ3/6, ζm = ∑
l ρlσ

m
l ,

µ
(n)
j =

∑
k

D
(n)
kj ρke−znσjkC

µ

k (zn) (23a)

ν
(n)
j =

∑
k

E
(n)
kj ρke−znσjk

[
Cν

k (zn) +
znσj

2
C

µ

k (zn)
]

(23b)

with

C
µ

k (zn) =
∑
l

γkl(zn)e
znσlk znσ

3
l ψ1(znσl) +

1

z2
n

(
1 +

znσk

2

)
(24a)

Cν
k (zn) =

∑
l

eznσlk

[
γkl(zn)

z2
nσ

4
l

2
ψ2(znσl) + γ

(1)
kl (zn)znσ

3
l ψ1(znσl)

]

+
2 + znσk + z2

nσ
2
k /4

z2
n

. (24b)

In order to obtain equations (19), (20a, b), (21a, b), (22), (23a, b), and (24a, b)
we used ρlγlk = ρkγkl and ρlγ

(1)
lk = ρkγ

(1)
kl obtained from equations (13a) and

(13b).
We have discussed the formal solution of the OZ equation with the closure of equations

(1) and (3). The solution Qij (r) is equation (5a) with equations (5b), (8), and (11) which
are expressed in terms of the set: {D(n)

ij , E
(n)
ij , γij (zn), γ

(1)
ij (zn)}. The set is the physical

solutions of the algebraic equations (9a), (9b), (15a) and (15b). Since equations (15a)
and (15b) are linear in respect to D

(n)
ij and E

(n)
ij , we can solve them in terms of γij (zn) and

γ
(1)
ij (zn). Therefore, the equations to be solved are equations (9a) and (9b) for γij (zn) and

γ
(1)
ij (zn).

The use of the solution Qij (r) in equation (4a) yields cij (r) for r < σij , and this and
equation (3) give the full structure of the fluid. This route, however, would not be better than
the following use of equation (16a):

c̃ij (k) ≡
∫

drcij (r)e
ikr = Q̃ij (k) + Q̃ji(k) −

∑
l

ρlQ̃i l(k)Q̃jl(−k) (25)

where Q̃ij (k) is defined by equation (10a).
For the interaction between i and j species of molecules in the fluid, the MSA closure of

equation (3) suggests

φij (r) = −kBT
∑
n=1

(
K

(n)
ij

r
+ L

(n)
ij zn

)
e−znr σij < r. (26)

The excess interaction energy per unit volume of the fluid, ε, is given as

ε =
∑
i

∑
j

2πρiρj

∫ ∞

0
dr r2gij (r)φij (r)

=
∑
i

∑
j

ρi

∑
n=1

zn

(
K

(n)
ij γij (zn) + L

(n)
ij γ

(1)
ij (zn)

)
. (27)
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